正态分布标准化的公式推导,正态分布标准化公式怎么用是正态分布标准化的公式:Y=(X-μ)/σ~N(0,1)的。
关于正态分布标准化的公式推导,正态分布标准化公式怎么用以及正态分布标准化的公式推导,正态分布标准化公式证明,正态分布标准化公式怎么用,正态分布标准化公式例题,正态分布标准化公式怎么来的等问题,小编将为你整理以下知识:
正态分布标准化的公式推导,正态分布标准化公式怎么用
正态分布标准化的公式:Y=(X-μ)/σ~N(0,1)。
证明;
因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}。
注:F(y)为Y的分布函数,Fx(x)为X的分布函数。
而F(y)=P(Y≤y)=P((X-μ)/σ≤y)=P(X≤σy+μ)=Fx(σy+μ)。
所以p(y)=F’(y)=F’x(σy+μ)*σ=P(σy+μ)*σ=[(2π)^(-1/2)]*e^[-(x^2)/2]。
从而,N(0,1)。
正态分布标准化的意义是可以方便计算,是一种统计学概念。
原本的正态分布图形有高矮胖瘦不同的形态,实际上是积分变换的必然结果,就好比是:1.y=kx+b直线,它不一定过原点的,但是通过变换就可以了:大Y=y-b;
大X=kx;
===>大Y=大X。
2.y=a*b乘积,通过变换就可以变成加法运算:Ln(y)=Lna+Lnb。
3.y=ax²+bx+c通过变换就可以变成标准形式:y=a(x+b/(2a))²+(c-b²/(4a))。
正态分布的标准化也只不过是“积分变换”而已,虽然高矮胖瘦不同的形态,但是变量的线性伸缩变换并不改变其量化特性,虽然标准化以后都变成期望是0,方差是1的标准分布了,但这种因变量自变量的依赖关系仍然存在,不用担心会“质变”。
正态分布标准化公式是什么?
正态分布标准化的公式:Y=(X-μ)/σ~N(0,1)。
标准正态分布 是一个在数学、物理及工程等领域友扮都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。
正态分布的定义
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布猛告首,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。
统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积枝数。
版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(http://www.zengtui.com/)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3933150@qq.com 举报,一经查实,本站将立刻删除。