两个向量垂直可以得到什么,两个向量平行可以得到什么结论是两向量平行可得到的结论有:方向相同或反;x1y2-x2y1=0;3、cos=±1;4、单位向量相等,或互为相反;5、a=λb;6、a在b上的投影向量等于±|a|;7、两个向量中有零向量的可能的。
关于两个向量垂直可以得到什么,两个向量平行可以得到什么结论以及两个向量垂直可以得到什么,空间两个向量平行可以得到什么,两个向量平行可以得到什么结论,两个向量平行可以得到什么公式,两个向量平行可以得到什么条件等问题,小编将为你整理以下知识:
两个向量垂直可以得到什么,两个向量平行可以得到什么结论
两向量平行可得到的结论有:1、方向相同或反;
2、x1y2-x2y1=0;
3、cos=±1;
4、单位向量相等,或互为相反;
5、a=λb;
6、a在b上的投影向量等于±|a|;
7、两个向量中有零向量的可能。
向量
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
它可以形象化地表示为带箭头的线段。
箭头所指:代表向量的方向;
线段长度:代表向量的大小。
与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。
如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。
在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。
许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。
与之相对的是标量,即只有大小而没有方向的量。
一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。
此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
因此,平日阅读时需按照语境来区分文中所说的”向量”是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
两向量垂直可得什么
两个向量垂直(如向量A和向量B)可得:两个向量相乘得到0(即:A*B=0)设向量A=(x1,y1)和向量B=(x2,y2)用坐标表示为:A*B=x1*x2+y1*y2=0 。
拓展资料
向量的定义:
既有大小又有方向的量叫做向量.如物理学中的力,位移,速度等.向量可用字母a,b,c等表示,也可用表示向量的有向线段的起点和终点字母表示扮段搜(起点写在前面,终点写在后,上面划箭头).
零向量,单位向燃慎量,平行向量,共线向量,相等向量的概念
(1)零向量:长度(模厅历)为零的向量叫零向量,记做0.
*零向量的方向可看做任意方向,规定零向量与任一向量平行.
(2)单位向量:长度(模)为1个单位长度的向量叫做单位向量.
(3)平行向量:方向相同或相反的非零向量叫平行行量.
*因为任一组平行向量都可移到同一直线上,所以平行向量又叫做共线向量.
(4)相等向量:长度相等且方向相同的向量叫做相等向量.
版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(http://www.zengtui.com/)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3933150@qq.com 举报,一经查实,本站将立刻删除。